C(33)	-0.1616 (5)	-0.2633 (7)	0.1615 (6)	5.6 (2)
C(34)	-0.1058 (5)	-0.3033 (6)	0.0953 (6)	4.9 (2)
C(35)	-0.0186 (4)	-0.2937 (5)	0.1122 (5)	3.9(1)
C(41)	0.0975 (4)	-0.0288 (5)	0.1598 (5)	3.7 (1)
C(42)	0.0886 (7)	0.0516 (6)	0.1059 (6)	6.1 (2)
C(43)	0.1083 (8)	0.0524 (6)	0.0119 (7)	7.5 (3)
C(44)	0.1430 (7)	-0.0263 (6)	-0.0316 (6)	6.1 (2)
C(45)	0.1511 (5)	-0.1043(5)	0.0252 (5)	4.4 (2)

Table 2. Selected geometric parameters (Å, °)

V(1)-O(1)	1.624 (3)	V(2)—O(4)	1.612 (3)
V(1)-O(2)	1.614 (3)	V(2)—O(5)	1.940 (2)
V(1)-O(5)	2.204 (2)	V(2)—N(2)	2.284 (3)
V(1)—N(1)	2.275 (4)	V(2)—N(31)	2.136 (3)
V(1)—N(11)	2.103 (3)	V(2)—N(41)	2.313 (3)
V(1)—N(21)	2.106 (3)	$V(1) \cdot \cdot \cdot V(2)$	3.690 (3)
V(2)—O(3)	1.631 (3)		
O(1) - V(1) - O(2)	106.0(1)	O(3)—V(2)—O(4)	105.8 (1)
O(1) - V(1) - O(5)	164.9 (1)	O(3)—V(2)—O(5)	100.7 (1)
O(1) - V(1) - N(1)	90.6 (1)	O(3)—V(2)—N(2)	91.1 (1)
O(1) - V(1) - N(11)	93.7 (1)	O(3)—V(2)—N(31)	89.8 (1)
O(1)—V(1)—N(21)	93.1 (1)	O(3)—V(2)—N(41)	162.2 (1)
O(2)—V(1)—O(5)	88.9 (1)	O(4)—V(2)—O(5)	108.3 (1)
O(2) - V(1) - N(1)	163.4 (1)	O(4)—V(2)—N(2)	160.1 (1)
O(2) - V(1) - N(11)	103.6(1)	O(4)—V(2)—N(31)	94.5 (1)
O(2)—V(1)—N(21)	101.7 (1)	O(4)—V(2)—N(41)	89.4 (1)
O(5) - V(1) - N(1)	74.6(1)	O(5)—V(2)—N(2)	78.3 (2)
O(5) - V(1) - N(11)	85.4 (2)	O(5)—V(2)—N(31)	151.1 (1)
O(5)—V(1)—N(21)	80.9 (1)	O(5)—V(2)—N(41)	82.7 (1)
N(1) - V(1) - N(11)	75.4 (1)	N(2) - V(2) - N(31)	74.5 (1)
N(1) - V(1) - N(21)	76.2 (1)	N(2)—V(2)—N(41)	72.4 (1)
N(11) - V(1) - N(21)	150.9 (1)	V(1)—O(5)—V(2)	126.2 (1)

H atoms were included at geometrically idealized positions; their coordinates were recalculated after each cycle. The H atoms of the two water molecules were not located.

Data collection, cell refinement and data reduction: *SDP* (Frenz, 1978). Program used to solve structure: *SHELXS86* (VMS version; Sheldrick, 1985). Program used to refine structure: *SDP*. Molecular graphics: *ORTEP* (Johnson, 1965). Software used to prepare material for publication: *SDP*. The calculations were performed on a VAX computer at the Universität Tübingen.

This work was supported by grants from PADCT, CNPq, FINEP, CAPES, FUNCITEC (Brazil) and VW-Stiftung (Germany).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: MU1137). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Butler, A. & Carrano, C. J. (1991). Coord. Chem. Rev. 109, 148–167. Chan, M. K. & Armstrong, W. H. (1989). J. Am. Chem. Soc. 111, 9121–9122.

- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft Univ. Press.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Knopp, P., Wieghardt, K., Nuber, B., Weiss, J. & Sheldrick, W. S. (1990). Inorg. Chem. 29, 363–371.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Neves, A., Ceccato, A. S., Erasmus-Buhr, C., Gehring, S., Haase, W., Paulus, H., Nascimento, O. R. & Batista, A. A. (1993). J. Chem. Soc. Chem. Commun. 23, 1782–1784.
- Neves, A., Ceccato, A. S., Erthal, S. M. D., Vencato, I., Nuber, B. & Weiss, J. (1991). *Inorg. Chem. Acta*, 187, 119–121.
- Neves, A., Ceccato, A. S., Vencato, I., Mascarenhas, Y. P. & Erasmus-Buhr, C. (1992). J. Chem. Soc. Chem. Commun. 8, 652–654.
- Neves, A., Hörner, M., Fenner, H. & Strähle, J. (1993). Acta Cryst. C49, 1737-1739.
- Neves, A., Walz, W., Wieghardt, K., Nuber, B. & Weiss, J. (1988). Inorg. Chem. 27, 2484-2489.
- Rehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148-167.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1995). C51, 811-813

Pentacarbonyl- $1\kappa C, 2\kappa^4 C$ -bis $[1,1(\eta^5)$ cyclopentadienyl](dimethylphenylphosphine- $2\kappa P$)- μ -dimethylphosphanidoniobiumtungsten

PASCAL OUDET, MAREK M. KUBICKI* AND CLAUDE MOÏSE

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel 21000 Dijon, France

(Received 6 January 1994; accepted 24 June 1994)

Abstract

The title complex, $[NbW(C_2H_6P)(C_5H_5)_2(CO)_5-(C_8H_{11}P)]$, belongs to a small family of monophosphido-bridged transition metal complexes without both a metal-metal bond and any other bridges. The observed geometries of the Nb (distorted tetrahedral) and W (*cis*-octahedral) centers are as expected with a significantly enlarged Nb—P(1)—W angle of 124.9 (2)°. The methyl groups of the bridging phosphido ligand adopt an *endo* orientation towards the CO (Nb—CO) ligand which compels them to adopt symmetrical positions with respect to the (OC)NbP plane, bisecting that of the cyclopentadienyl rings. Consequently, the C(Nb—CO), Nb, P and W atoms are coplanar.

Comment

During our studies on the reactivity of phosphidobridged heterobimetallic compounds derived from bis(η^5 -cyclopentadienyl)niobium and Group 6 metal (M') carbonyls of the type [(C₅H₅)₂Nb(μ -PR₂CO)M'- $(CO)_n$] (Oudet, Kubicki & Moïse, 1994), we observed that an opening of the carbonyl bridge may occur by the action of good electron-donor ligands such as some phosphines. Monobridged μ -PR₂ complexes without a metal-metal bond are formed in these reactions. The structure of one of these new monobridged compounds, $[(C_5H_5)_2Nb(CO)(\mu-PMe_2)W-(CO)_4(PMe_2Ph)]$ (1), is reported here.

The structures of only two mono-phosphidobridged heterobimetallic complexes derived from metallocenes without a metal-metal bond or other bridges have been studied previously: $[(C_5H_5)_2 Mo(H)(\mu-PPh_2)Mn(CO)_2(C_5H_5)$] (2) (Barré, Kubicki & Moïse, 1990) and $[(C_5H_5)_2Ta(H)(\mu-PMe_2)-Mn(CO)_2(C_5H_5)]$ (3) (Bonnet, Kubicki, Lavastre, Leblanc & Moïse, 1990). The value of Nb-P(1)-W in (1) $[124.9(2)^{\circ}]$ is as expected and is opened as much as the analogous angles in (2) and (3) [Mo-P-Mn 124.47 (7), Ta-P-Mn 125.51 (1)°]. The M - P - M' angles in bis(cyclopentadienyl) derivatives are therefore much larger than in the phosphido-bridged mono(cyclopentadienyl) complexes $[(C_5H_5)Fe(CO)_2(\mu - PPh_2)M(CO)_5]: M = Cr, Cr P-Fe = 119.20(5)^{\circ};$ M = Mo, Mo - P - Fe =118.59 (4)° (Shyu, Lin & Wen, 1993); and M = W, W—P—Fe = 118.42 (6)° (Shyu, Lin, Dong & Wen, 1993). The W-P(1) bond length in (1) [2.610 (4) Å] is rather long but corresponds well to the W-P distances of 2.610 (1) and 2.588 (1) Å observed in the dibridged $[(CO)_4W(\mu-PPh_2)_2W(CO)_4]^2$ anion

Fig. 1. Molecular structure of (1). Displacement ellipsoids are drawn at the 50% probability level.

(Shyu, Calligaris, Nardin & Wojcicki, 1987). The Nb—P(1) and Nb—C(1) distances [2.668 (4) and 2.055 (18) Å, respectively] are similar to those found in the niobium(III) terminal-phosphido complex [$(C_5H_5)_2Nb(CO)(PrPhP)$] (Bonnet, Kubicki, Moïse, Lazzaroni, Salvadori & Vitulli, 1992).

Mo $K\alpha$ radiation

 $\lambda = 0.71073$ Å Cell parameters from 25

reflections

 $\mu = 4.999 \text{ mm}^{-1}$

Rhombic bipyramidal

 $0.30 \times 0.15 \times 0.15$ mm

2360 observed reflections

 $[I \geq 3\sigma(I)]$

 $R_{\rm int}=0.048$

 $h = 0 \rightarrow 17$

 $k = 0 \rightarrow 16$

 $l = -2 \rightarrow 32$

3 standard reflections

frequency: 120 min

intensity decay: 5.5%

 $\theta_{\rm max} = 25^{\circ}$

 $\theta = 10 - 18^{\circ}$

T = 296 K

Deep red

Experimental

Crvstal data

[NbW(C₂H₆P)(C₅H₅)₂-(CO)₅(C₈H₁₁P)] $M_r = 746.20$ Orthorhombic *Pbca* a = 14.290 (3) Å b = 13.571 (2) Å c = 27.314 (8) Å V = 5297 Å³ Z = 8 $D_x = 1.871$ Mg m⁻³

Data collection

Enraf–Nonius CAD-4
diffractometer
ω –2 θ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker &
Stuart, 1983)
5653 measured reflections
5192 independent reflections

Refinement

W Nb P(1) P(2) C(1) C(2) C(3) C(4) C(5) O(1) O(2) O(3)

O(4)

O(5)

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.24$
R = 0.043	$\Delta \rho_{\rm max} = 0.7 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.051	$\Delta \rho_{\rm min} = 0.6 \ {\rm e} \ {\rm \AA}^{-3}$
S = 2.220	Extinction correction: none
2360 reflections	Atomic scattering factors
307 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/[\sigma^2(I) + (0.05I)^2]^{1/2}$	

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	Z	B_{eq}
	0.37398 (5)	0.58129 (4)	0.38582 (2)	2.699 (9)
	0.6280(1)	0.7720(1)	0.43782 (5)	2.95 (3)
	0.5129 (3)	0.7017 (3)	0.3693 (3)	2.86 (8)
	0.3477 (3)	0.5263 (3)	0.2986 (2)	3.7 (1)
	0.691 (1)	0.852 (1)	0.3833 (7)	4.2 (4)
	0.267 (1)	0.498 (1)	0.4015 (6)	3.9 (4)
	0.461 (1)	0.467(1)	0.3932 (6)	4.2 (4)
	0.283 (1)	0.691 (1)	0.3768 (6)	3.3 (3)
	0.390(1)	0.606(1)	0.4576 (6)	3.6 (4)
	0.731 (1)	0.904 (1)	0.3590 (5)	7.2 (4)
	0.2031 (9)	0.450(1)	0.4115 (5)	6.5 (3)
	0.505(1)	0.396(1)	0.3999 (5)	8.5 (4)
	0.224 (1)	0.751 (1)	0.3721 (6)	7.0 (4)
	0.395(1)	0.6121 (9)	0.4990 (4)	6.3 (4)

C(6)	0.467(1)	0.810(1)	0.3359 (6)	3.9 (4)
C(7)	0.588(1)	0.653 (2)	0.3228 (6)	5.3 (5)
C(8)	0.383 (2)	0.403 (1)	0.2852 (7)	7.9 (7)
C(9)	0.226 (1)	0.515 (2)	0.2837 (7)	9.4 (7)
C(10)	0.387 (2)	0.597 (1)	0.2449 (6)	4.3 (4)
C(11)	0.455 (2)	0.564 (2)	0.2140 (8)	6.3 (6)
C(12)	0.486 (2)	0.623 (2)	0.1761 (9)	10.4 (8)
C(13)	0.439 (2)	0.707 (2)	0.1679 (9)	13.4 (6)
C(14)	0.377 (2)	0.746 (2)	0.1976 (9)	12.4 (8)
C(15)	0.350(1)	0.687 (1)	0.2353 (7)	5.2 (5)
C(16)	0.523 (1)	0.814 (1)	0.5019 (7)	4.2 (4)
C(17)	0.479 (1)	0.847 (1)	0.4606 (6)	3.8 (4)
C(18)	0.537 (1)	0.918 (1)	0.4396 (7)	4.5 (4)
C(19)	0.614 (1)	0.932 (1)	0.4719 (8)	5.7 (5)
C(20)	0.608 (2)	0.864 (1)	0.5086 (7)	5.3 (5)
C(21)	0.669 (1)	0.599 (1)	0.4337 (7)	4.5 (4)
C(22)	0.740 (1)	0.654 (1)	0.4095 (7)	4.5 (4)
C(23)	0.785 (1)	0.714 (2)	0.4437 (8)	5.6 (5)
C(24)	0.739(1)	0.697 (1)	0.4890 (8)	5.7 (5)
C(25)	0.669 (2)	0.627(1)	0.4798 (7)	6.0 (5)
<i>Cp</i> (1)†	0.552	0.875	0.476	
Cp(2)	0.720	0.658	0.451	

 \uparrow Cp(1) and Cp(2) represent the centroids of the C(16)–C(20) and C(21)–C(25) cyclopentadienyl rings, respectively.

Table 2. Selected geometric parameters (Å, °)

W—Nb	4.679 (2)	W-C(4)	1.99 (2)
W—P(1)	2.610 (4)	W-C(5)	2.00 (2)
WP(2)	2.524 (5)	Nb— $Cp(1)$	2.06
W-C(2)	1.95 (2)	Nb- <i>Cp</i> (2)	2.07
W—C(3)	2.00 (2)	Nb-P(1)	2.668 (4)
P(1)—W—P(2)	97.7 (1)	C(2)—W—C(5)	88.3 (6)
P(1)—W—C(2)	176.1 (6)	C(3)—W—C(4)	177.2 (7)
P(1) - W - C(3)	91.9 (5)	C(3)—W—C(5)	87.9 (6)
P(1) - W - C(4)	90.3 (5)	C(4)—W—C(5)	93.8 (6)
P(1) - W - C(5)	88.8 (5)	P(1)—NbC(1)	87.3 (5)
P(2)—W—C(2)	85.4 (5)	Cp(1)—Nb— $Cp(2)$	139.4
P(2)—W—C(3)	87.6 (5)	W—P(1)—Nb	124.9 (2)
P(2)—W—C(4)	90.4 (5)	W—P(1)—C(6)	108.4 (6)
P(2)—W—C(5)	172.1 (4)	WP(1)C(7)	110.4 (7)
C(2)—W—C(3)	90.7 (7)	Nb-P(1)-C(6)	106.1 (6)
C(2)—W—C(4)	87.2 (7)	Nb-P(1)-C(7)	105.1 (6)

SDP (Enraf-Nonius, 1985) was used to solve and refine the structure.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: PA1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barré, C., Kubicki, M. M. & Moïse, C. (1990). Inorg. Chem. 29, 5244-5246
- Bonnet, G., Kubicki, M. M., Lavastra, O., Leblanc, J.-C. & Moïse, C. (1990). Acta Cryst. A46, C-227.
- Bonnet, G., Kubicki, M. M., Moïse, C., Lazzaroni, R., Salvadori, P. & Vitulli, G. (1992). Organometallics, 11, 964–967.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Oudet, P., Kubicki, M. M. & Moïse, C. (1994). Organometallics. Submitted.
- Shyu, S. G., Calligaris, M., Nardin, G. & Wojcicki, A. (1987). J. Am. Chem. Soc. 105, 3617–3625.
- Shyu, S. G., Lin, P. J., Dong, T. Y. & Wen, Y. S. (1993). J. Organomet. Chem. 460, 229–236.
- Shyu, S. G., Lin, P. J. & Wen, Y. S. (1993). J. Organomet. Chem. 443, 115-121.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 813-815

A Mononuclear Manganese(III) Schiff Base Complex, $[Mn(C_{14}H_{10}N_2O_2)-(C_8H_7O_3)(CH_4O)]$

SOMNATH DUTTA AND VADIVELU MANIVANNAN

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India

LINGAMALLU GIRI BABU AND SAMUDRANIL PAL*

School of Chemistry, University of Hyderabad, Hyderabad 500 134, India

(Received 2 September 1994; accepted 26 October 1994)

Abstract

In the title compound, $[2 - (\alpha - hydroxybenzylidene-hydrazonomethyl)phenolato(2-)-N,O,O'](methanol-O)-(methyl salicylato-O,O')manganese(III), [Mn(BHS)-(MS)(CH₃OH)], the manganese(III) ion is surrounded by an O₅N coordination sphere. The tridentate 2-(<math>\alpha$ -hydroxybenzylidenehydrazonomethyl)phenolate (BHS²⁻) ligand (H₂BHS is the benzoyl hydrazone of salicylaldehyde) binds the metal ion meridionally and the methyl salicylate (MS⁻) ligand is bidentate. The sixth position is occupied by a methanol molecule. There is a significant tetragonal elongation due to a Jahn-Teller effect.

Comment

Our interest in polynuclear manganese complexes has led us to obtain mononuclear manganese complexes with coordinated solvent molecules. We intend to use these mononuclear complexes as precursors in the synthesis of polynuclear species of desired nuclearity by replacing the solvent molecules with various bridging groups such as oxo, hydroxo, acetato, *etc.* Herein we report the structure of a new mononuclear manganese(III) complex containing a coordinated methanol molecule, (I).

A view of the $[Mn(BHS)(MS)(CH_3OH)]$ molecule with the atom-labelling scheme is presented in Fig. 1. The manganese(III) ion has an O₅N coordination sphere.